UNIVERSITY OF KERALA

B-TECH DEGREE COURSE

FIRST AND SECOND SEMSESTER

REVISED SYLLABUS
2008 ONWARDS

08-101
Engineering Mathematics - 1
L-T-P:2-1-0
credits: 6

MODULE - 1

Abstract

Application of differentiation:- Definition of Hyperbolic functions and their derivatives successive differentiation - Leibniz theorem (with out proof) - curvature - Radius of curvature center of curvature -evolute (Cartesian, polar and parametric forms) partial differentiation and applications:- partial derivatives -Euler's theorem on homogeneous functions - Total derivatives - Jacobian's - errors and approximation - Taylors series (one and two variables) -Maxi ma and Mini ma of functions of two variables - lag ranges method - Leibniz rule on differentiation under integral sign.

Vector differentiation and applications:- Scalar and vector functions - differentiation of vector functions - Velocity and acceleration - scalar and vector fields - Operator - gradient - physical interpretation of gradient - Directional derivative - Divergence - curl - Identities involving (no proof) - Ir rotational and solenoid fields -Scalar potential.

MODULE - 2

Laplace transforms:- Transforms of elementary functions - shifting property -inverse transforms Transforms of derivatives of derivatives and integrals -Transform functions multiplied by t and t -Convolution theorem(with out proof) - transforms of unit step function, unit impulse function and periodic functions - second shifting theorem - solution of ordinary differential equations with constant coefficients using Laplace transforms.
Differential equations and applications:- Linear differential equations with constant coefficients -

Method of variation of parameters-Cauchy and Legendre equations -Simultaneous linear equations with constant coefficients-Application to orthogonal trajectories(Cartesian form only).

MODULE - 3

Matrices :- rank of a matrix-Elementary transformations -Equivalent matrices- inverse of a matrix by gauss - Jordan method - Echelon form and normal form -linear dependence and independence and dependence of vectors- Consistency-solution of a system linear equations -Non homogeneous and homogeneous equations - Eugen values and Eugen vectors -Properties of Eugen values and Eugen vectors -clayey Hamilton theorem (no proof) - Diagonalisation - Quadratic forms Reduction to canonical forms - Nature of quadratic forms - Definiteness,rank,signature and index.

REFERENCES

1. Kreyszig; Advanced engineering mathematics, $8^{\text {th }}$ edition, Wiley eastern.
2. Peter o Neil ;Advanced engineering mathematics,Thomson .
3. B.S Grewal;Higher engineering mathematics,Khanna publishers.
4. B.V Ramana; Higher engineering mathematics, Tata McGraw Hill,2006.
5. Michel D Greenberg;Advanced engineering mathematics,Pearson International.
6. Sureshan j. Nazarudeen and Royson ;Engineering mathematics I,Zenith publications.

Digital campus

